a2 United States Patent

Voronkov et al.

US009182974B1

US 9,182,974 B1
Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(30)

Apr. 18, 2014

(1)

(52)

(58)

SYSTEM AND METHODS FOR UPDATING
SOFTWARE OF TEMPLATES OF VIRTUAL
MACHINES

Applicant: Kaspersky Lab ZAQ, Moscow (RU)

Inventors: Konstantin P. Voronkov, Moscow (RU);
Stepan N. Deshevykh, Moscow (RU);
Timur E. Smirnov, Moscow (RU);
Nikita M. Voitov, Moscow (RU); Pavel
N. Yarykin, Moscow (RU)

Assignee: AO Kaspersky Lab, Moscow (RU)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/308,027

Filed: Jun. 18,2014

Foreign Application Priority Data

RU) e 2014115455
Int. Cl1.
GO6F 9/445
GO6F 9/455
GO6F 11/14
GO6F 9/44

U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)

GO6F 8/65 (2013.01); GOGF 9/45504
(2013.01); GOGF 11/1433 (2013.01)
Field of Classification Search

CPC GOGF 8/63; GOGF 8/65; GOGF 8/67-8/68;

GOGF 9/45504; GOGF 9/45533; GOGF 9/45558;

GOGF 11/1433

USPC 717/168; 14/168
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

Sudhakar

Friesetal.ccccooeene 717/168
Natchadalingam et al.

Leitman etal. 717/168
Meyerson VA VK
Beatyetal.c.c.... 718/100
6/2012 Jarrett et al.

2/2013 DeLucaetal.ccooevnnn. 718/1

(Continued)

8,185,884
8,205,194
8,578,376
8,769,519
2002/0184619
2008/0222638
2012/0144489
2013/0042234

B2
B2 *
B2
B2 *
Al*
Al*
Al
Al*

5/2012
6/2012
11/2013
7/2014
12/2002
9/2008

FOREIGN PATENT DOCUMENTS

EP
RU
WO

2530589 A2
2498394 A 6/2012
2012065815 Al 5/2012

OTHER PUBLICATIONS

12/2012

Grobauer et al., “Understanding Cloud Computing Vulnerabilities,”
IEEE, 2011, 8pg.*

(Continued)

Primary Examiner — Ryan Coyer
(74) Attorney, Agent, or Firm — Arent Fox LLP; Michael
Fainberg

(57) ABSTRACT

Disclosed are systems, methods and computer readable
medium for updating software of templates of virtual
machines. An example method includes determining a first
coefficient indicative of a level of importance of a continuous
operation of one or more virtual machines created from a
virtual machine template; determining a second coefficient
indicative of a level of criticality of software updates on the
one or more virtual machines created from the virtual
machine template; determining a third coefficient as a func-
tion of the first coefficient and the second coefficient; and
when the third coefficient exceeds a threshold, updating the
software on the virtual machine template to generate an
updated virtual machine template.

20 Claims, 5 Drawing Sheets

15
Update control J/
le
—_———
|o Castcient of criticatity |
—_— uj
|- Sum‘aoﬁwaruupdutes‘
f 110 b e
‘—'- ———
{ Terpiate ! 13
| analysis }-—-» Updste analysia module [~
{ module i
—————

r. Set of software updates

L |- Type of software updates

s List of vulnerabifities closed
I- Crealion time of software
updates I
b

US 9,182,974 B1

Page 2
(56) References Cited 2014/0344805 A1* 11/2014 Shuetal. ..., 718/1
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
2013/0074072 A1* 3/2013 Kennedyccccccoovrvenrneen. 718/1 Wang et al., “Rethink the Virtual Machine Template,” ACM, 2011,

2014/0149696 Al1* 5/2014 Frenkel et al. 711/162 Llpg.*
2014/0157266 Al* 6/2014 Fletcheretal. 718/1
2014/0325363 Al* 10/2014 Fletcheretal. 715/736 * cited by examiner

U.S. Patent Nov. 10, 2015 Sheet 1 of 5 US 9,182,974 B1

§ f 117
j Updale testing l
i module ‘
o
118)
¥
116
infrastructure - Template ___,/
| | updale maodule
i
¥ t
; | A
f
: } 115
; ; Update control _J,,/
| module
§ t
% A A
]
e 13
N xf
5 Template 110
HHHHHHH module

114

!
!
2
MT analysis modute | | ,| Update analysis
{
{
{
{
!
!
{
{

112

Update
database

Template
database

U.S. Patent Nov. 10, 2015 Sheet 2 of 5 US 9,182,974 B1

Update control

module \‘ 115

A

.l Coefficient of importance
of contintous operation

118

_ Infrastructure l- Virtual machine template l
‘ Template analysis
module
;.“] Ty
Software 110
evaluation
table
A
I- Virtisal machine template]
Information on virtual machine
o, | template {such as software)

« List of virtual machines]
I crealed from template

112
Template

database

U.S. Patent Nov. 10, 2015 Sheet 3 of 5 US 9,182,974 B1

115
Update control J
module
A
Lo b

» Coefficient of criticality |

Ema of updates
l » Set of software updates !
L

f 110 —
;“ - —-—— 1
i
{ Template 113
{ analysis - ~»1 Update analysis module "
i module
L i
A
|" -3
L]

Set of software updates l
S—— I- Type of software updates
» List of vulnerabiiities closed
I «» Creation time of software
updales l

114

Update
database

Fig. 3

U.S. Patent Nov. 10, 2015 Sheet 4 of 5

Calculation of coefficient of
importance of uninterrupied
aperation of a virlual machine

!

Calculation of coefficient of
criticality of sofiware updates

v

Calculation of combination
of the coefficients

ombination
greater than

esiablished
value?

-
1
(o]

|

No updating of
software of virfual
machine template

US 9,182,974 B1
400
410
420
Yes
l 440
Updating of

software of virtual
machine templale

v a0

Virtual
machine template classified
insuitable for further use?

Yes

No restarting of
virtual machines
from the
infrastruciure

Analysis of
influence of
software update
on the functioning
of the software

No

Restarting of
virtual machines
from the
infrastructure

US 9,182,974 B1

Sheet 5 of 5

Nov. 10, 2015

U.S. Patent

G ‘bid
JAE suoneoydde

— ey @snou erep | 8€ S8IMpOW ge WSisAs ay
p 6¢ Emkmwbw wesboid | ¢ suogeondde | ¢ WwalsAs
(114 PIBOGASY < JBYO Bugesedo

. ~ e

&p (Suondwos e A _
oW AHV Y5 Wapow @ m/_ ~ -
i ~ e -

[leeesslntelislihasselihaseiinssaliacel fatael Sunad Saatafionesfiesafiated fastadientasilamiiionsed e oo oo seeoe g e ooy coeey woge Tecee vecee mocec cooee reeer occee necee soece ot}
! 0f 4. %, = = = i)~ !
“ [y [y XA]
0% NomBu | v |
B3IE-{B00] : |
u 16 acepautl o pod|l pg sovpeil e mumtmwm Z¢ DoBLBIU) 6¢ ejep wesbod |
“ “ > HIOMIBU reuas | aaup eopdo usmc@mE NSIP pisy po sompou] i
ac RN u wiesbosd JBLI0 w
, i 1
mmmMmMm ” ic suogeoydde |]
I i CZ SNQ WoIsAs /
» 9t weisAs ajy | 4
]
“ < < < g¢ weyshs Bugeredo| |
. g5 gy Joidepe 1z $Z W !
t JBH0JU0D CBPIA y S wi iiiii _;L
iy | 10888004 9z soig] |
SN YT NOM m
IORUOLU 1 [e /|
i Zz Moweus wnshs |}

A A——- ——— A——_ ———. - -, -, ., ., e, e ey ey Y Sy e Aede Seede Seede S S G R, S S W T T G T O Y AR A

US 9,182,974 B1

1
SYSTEM AND METHODS FOR UPDATING
SOFTWARE OF TEMPLATES OF VIRTUAL
MACHINES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present disclosure claims benefit of priority under 35
U.S.C. 119(a)-(d) to a Russian Application No. 2014115455
filed on Apr. 18,2014, which is incorporated by reference
herein.

FIELD OF TECHNOLOGY

The present disclosure relates to the field of control of
virtual machines, and more specifically, to systems and meth-
ods for updating software of templates of virtual machines.

BACKGROUND

Today the use of Virtual Desktop Infrastructure (VDI),
which generally includes a set of templates of virtual
machines and means that allow the operation of virtual
machines created from those templates, is becoming increas-
ingly popular as the basis for forming an enterprise or orga-
nizational infrastructure. Such a method of infrastructure
organization is attractive because of the ease of managing the
infrastructure resources: at least one server is dedicated,
whose hardware is used for the operation of a group of virtual
machines, which are used remotely by the employees of the
organization. In other words, the computing resources are
“concentrated” in a single place, while the control of the
software used by the employees of the organization occurs via
the control of the templates, which eliminates the need for
determining a set of software to be used for each employee.

However, the aforementioned method of infrastructure
organization has a number of drawbacks. For example, the
software installed on the virtual machines and used by the
employees of the enterprise can become obsolete and vulner-
abilities may be discovered therein. On the one hand, the
operation of a virtual machine is in no way different in regard
to the general ability to install software updates or updates to
close vulnerabilities, that is, for example, the software vul-
nerabilities can be eliminated by installing corresponding
software updates on a virtual machine created from a template
that is vulnerable in terms of the software installed thereon.
However, the problem arises that after a certain time, the
software on the template becomes so outdate that the instal-
lation of all necessary updates on the virtual machine created
from the template takes a lot of time and computing resources

There are conventional methods of automatic updating of
the software of templates, but in these methods the problem of
selecting an update strategy which can effectively manage a
set of virtual machines and templates, minimizing the time
during which the software being updated is unavailable for
use, is not solved. Accordingly, there is an unmet need in the
field of control of virtual machines to improve the processes
of updating software of templates of virtual machines.

SUMMARY

Disclosed are various aspects of systems, methods and
computer program products for automatic updating software
of templates of virtual machines. One technical result of the
disclosed aspects is to minimize the idle time of the virtual
machine for updating of software.

15

20

40

45

60

2

In one aspect, an example method for updating software of
templates of virtual machines includes determining a first
coefficient indicative of a level of importance of a continuous
operation of one or more virtual machines created from a
virtual machine template; determining a second coefficient
indicative of a level of criticality of software updates on the
one or more virtual machines created from the virtual
machine template; determining a third coefficient as a func-
tion of the first coefficient and the second coefficient; and
when the third coefficient exceeds a threshold, updating the
software on the virtual machine template to generate an
updated virtual machine template.

In another aspect, the method may further include deter-
mining, based on an analysis of critical events occurring
during a period of operation of a test virtual machine created
from the updated virtual machine template, whether the
updated virtual machine template is suitable for being used
for one or more virtual machines, and when the updated
virtual machine template is suitable: creating a new virtual
machine from the updated virtual machine template; shutting
down the one or more virtual machine; and running the new
virtual machine to replace the one or more virtual machines.

In another aspect, the method may further include provid-
ing a database of software updates storing one or more of: at
least one software update for updating of the virtual machine;
data about a creation time of the software update; data about
a version of the software update; data about software for
which the software update is intended; data about vulnerabili-
ties which are patched by the software update; data about a
level of criticality of the software update; and data indicating
a nature of changes made in the software by the update.

In another aspect, the third coefficient is one of a linear
function of'the first coeflicient and the second coefficient; and
a product of the first coefficient weighted by a first index and
the second coefficient weighted by a second index.

In another aspect, updating the software on the virtual
machine template may further include generating a dummy
virtual machine based on the virtual machine template; apply-
ing the software update to the software of the dummy virtual
machine; shutting down the dummy virtual machine; and
creating an image corresponding to the dummy virtual
machine.

In another aspect, updating the software on the virtual
machine template may further include applying the software
update to the software of the virtual machine template.

In another aspect, determining the first coefficient may
include, based on a software evaluation table in which a
weighting factor is established for each software program,
determining weighting factors for installed software on the
virtual machine template; and calculating the first coefficient
as a function of the weighting factors.

In another aspect, determining the first coefficient may be
performed based on recorded length of continuous operation
of the virtual machine.

In another aspect, determining the second coefficient may
further include determining one or more characteristics of the
software update and respective coefficients for the one or
more characteristics; and determining the second coefficient
as a function of the respective coefficients.

Inanother aspect, an example system for updating software
of templates of virtual machines, the system comprising a
processor configure to determine a first coefficient indicative
of a level of importance of a continuous operation of one or
more virtual machines created from a virtual machine tem-
plate; determine a second coefficient indicative of a level of
criticality of software updates on the one or more virtual
machines created from the virtual machine template; deter-

US 9,182,974 B1

3

mine a third coefficient as a function of the first coefficient
and the second coefficient; and when the third coefficient
exceeds a threshold, update the software on the virtual
machine template to generate an updated virtual machine
template.

In a further aspect, an example computer program product,
stored on a non-transitory computer-readable storage
medium, comprises computer-executable instructions for
updating software of templates of virtual machines, including
instructions for determining a first coefficient indicative of a
level of importance of a continuous operation of one or more
virtual machines created from a virtual machine template;
determining a second coefficient indicative of a level of criti-
cality of software updates on the one or more virtual machines
created from the virtual machine template; determining a
third coefficient as a function of the first coefficient and the
second coefficient; and when the third coefficient exceeds a
threshold, updating the software on the virtual machine tem-
plate to generate an updated virtual machine template.

The above simplified summary of example aspects serves
to provide a basic understanding of the present disclosure.
This summary is not an extensive overview of all contem-
plated aspects, and is intended to neither identify key or
critical elements of all aspects nor delineate the scope of any
or all aspects of the present disclosure. Its sole purpose is to
present one or more aspects simplified form as prelude to the
more detailed description of the disclosure that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into
and constitute a part of this specification, illustrate one or
more example aspects of the present disclosure and, together
with the detailed description, serve to explain their principles
and implementations.

FIG. 1 illustrates the structural diagram of an example
system for updating software of templates of virtual machines
according to one example aspect.

FIG. 2 illustrates one example aspect of a template analysis
module according to one example aspect.

FIG. 3 illustrates one example aspect of an update analysis
module according to one example aspect.

FIG. 4 is a flowchart of an example method of running a
virtual machine according to one example aspect.

FIG. 5 shows an example of a general-purpose computer
system suitable for implementing system and methods for
updating software of templates of virtual machines according
to various example aspects.

DETAILED DESCRIPTION

Example aspects are described herein in the context of a
system, method and computer program product for updating
software of templates of virtual machines. Those of ordinary
skill in the art will realize that the following description is
illustrative only and is not intended to be in any way limiting.
Other aspects will readily suggest themselves to those skilled
in the art having the benefit of this disclosure. Reference will
now be made in detail to implementations of the example
aspects as illustrated in the accompanying drawings. The
same reference indicators will be used to the extent possible
throughout the drawings and the following description to
refer to the same or like items.

Some example aspects update software of templates of
virtual machines by considering a level of importance of
continuous operation of virtual machines that use the tem-
plate and also a level of criticality of applying software

10

15

20

25

30

35

40

45

50

55

60

4

updates to the templates. Some further aspects determine
whether the updated template is suitable to be used for the
virtual machines and reboot the virtual machines accordingly.
Accordingly, updates may be performed on the basis of an
analysis of a number of characteristics of both the set of
software updates and the template of the virtual machine
whose software is intended to be updated, or the virtual
machines created from the aforementioned template of the
virtual machine.

FIG. 1 shows the structural diagram of an example aspect
of a system for running a virtual machine. The infrastructure
118 of a certain organization in one example aspect includes
a server, on which a set of virtual machines run, access to
which is provided remotely by computing devices which are
used by the employees of the organization. The virtual
machines operating in the framework of the infrastructure
118 may be created from templates of virtual machines. In
one example aspect, the template of a virtual machine may be
an image of'the virtual machine storing information about the
operating system installed on the virtual machine, the soft-
ware, and the hardware set which is accessible for use by the
virtual machine, which is used to create virtual machines that
are identical with the virtual machine described by the afore-
said image. For the storage of the templates of virtual
machines, which can be used in the infrastructure 118 of the
organization, a template database 112 is used. In one example
aspect, the template database 112 may additionally store
information on the software installed on the template of the
virtual machine. In yet another example aspect, the template
database 112 for each template of a virtual machine addition-
ally stores information on the virtual machines created from it
and used in the infrastructure 118. The group of templates of
virtual machines used in the infrastructure 118 of the organi-
zation may include templates of virtual machines used for
different purposes, e.g., from virtual machines playing the
role of servers to virtual machines used by accountants or
employees of the human resources department of the organi-
zation. Thus, the software running on the templates of the
virtual machines used in the infrastructure 118, and also the
time of continuous working of the virtual machines created
from the mentioned templates, may vary. For example, a
virtual machine playing the role of an email server, and which
may run an e-mail server software, may operate without inter-
ruption over the course of several months, while a virtual
machine used by the accountants, and which may run an
accounting software, may be restarted each day.

The templates of the virtual machines stored in the tem-
plate database 112 for a time meet the needs of the infrastruc-
ture 118, for example, up-to-date software (in the sense of no
vulnerabilities and meeting the needs of the employees of the
organization) is installed on the templates of the virtual
machines. After some time passes, the software installed on
the template may become outdated, for example, vulnerabili-
ties may appear in it, which can be used by hackers, and also
the software may simply cease meeting the possibly increas-
ing needs of the company employees (for example, a com-
pany employee using software, such as an email client, now
needs to filter unwanted emails, which cannot be done with
the existing software functionality). To solve this situation,
sonic example aspects update the software on the templates of
the virtual machines so that each virtual machine created
from a template already has a set of updated software, and the
users of the virtual machines do not have to spend their time
updating the software on the virtual machines they are using.
To update the software of the templates of the virtual
machines, software updates may be used that are stored in an
update database 114. In one example aspect, the database 114

US 9,182,974 B1

5

may be filled up regularly as new software updates appear for
downloading via the Internet. The software updates may
include, but not limited to new program files, data used by the
software, e.g., virus definitions, or instructions for changing
the existing software files, e.g., software patches, etc. Besides
software updates, in one example aspect, the following infor-
mation may be stored in the update database 114: the creation
time of the software update; the software for which the men-
tioned update is intended; the version of the software update;
the names of the vulnerabilities which are patched by install-
ing the software update, if such exist (for example, CVE-
2013-0422); the level of criticality of the update, which in one
example aspect is established by the creators of the software
update and evaluated by a number, the type of update, e.g., the
nature of the changes made in the software, such as elimina-
tion of a vulnerability, and/or changing an interface, and/or
changing a software functionality, which in one example
aspect may be indicated by the developer of the software
update.

In one example aspect, updating of the virtual machines of
the infrastructure 118 (e.g., updating of the software of the
virtual machines) performing various roles, may be per-
formed as follows: update the software of the corresponding
templates of the virtual machines, stop operation of said
virtual machines, and start each from the template of the
virtual machine with the updated software. Some example
aspects for updating virtual machines minimize the number
of shutdowns (or standstill time) during operation of those
virtual machines for which a continuous operation is critical
(for example, if the virtual machine is playing the role of an
email server, or a database server). The template of a virtual
machine may be characterized by a coefficient of importance
of continuous operation, which is used to evaluate the criti-
cality of the continuous running of the virtual machines cre-
ated from the mentioned template. Coefficient of importance
of continuous operation may be a number (such as 10.75), the
larger the value of which, the more important its continuous
operation for the virtual machine (created from the template
to which the mentioned coefficient pertains). To evaluate the
criticality of continuous operation of at least one virtual
machine created from the template of the virtual machine and,
accordingly, designate a coefficient of importance of continu-
ous operation for the template of the virtual machine, a tem-
plate analysis module 110 is used. The template analysis
module 110 uses the template of the virtual machine from the
template database 112 to evaluate this template and to calcu-
late a coefficient of importance of continuous operation cor-
responding to this template. One example working scheme of
the template analysis module 110 is shown in FIG. 2, which
will be described later.

The software updates stored in the update database 114
may be intended for different purposes: some of the software
updates may be intended to expand the existing software
functionality, while others may be intended to eliminate vul-
nerabilities in the software. Depending on the software
changes which are introduced by the software updates, the
need may vary to interrupt the operation of the virtual
machines from the infrastructure 118 in order to start their
updated versions and, consequently, install the software
updates on the corresponding templates of the virtual
machines. To evaluate the need to install software updates on
a template, a coefficient of criticality of updates is used.
Coefficient of criticality of updates may be a number (such as
20.34), the larger the value of which, the more important the
software update to the operation of the software. To evaluate
the importance of installing a set of software updates on a
template of a virtual machine and, consequently, designating

10

15

20

25

30

35

40

45

50

55

60

65

6

a coefficient of criticality of the update for a set of software
updates, an update analysis module 113 is used. The update
analysis module 113 uses the set of software updates from the
update database 114 to evaluate the set of said updates and to
calculate a coefficient of criticality of updates corresponding
to the analyzed set of software updates. One example working
scheme of the update analysis module 113 is shown in FIG. 3,
which will be described later.

An update control module 115 is designed to make a deci-
sion on updating the software of the template of a virtual
machine. The decision as to the need to install a set of soft-
ware updates on the template of a virtual machine is made on
the basis of an analysis of a number of characteristics of both
the set of software updates and the template of the virtual
machine whose software is intended to be updated, or the
virtual machines created from the aforementioned template
of the virtual machine. In one example aspect, one uses as
such characteristics the coefficient of importance of continu-
ous operation, which is determined by the template analysis
module 110, and also the coefficient of criticality of updates,
which is determined by the update analysis module 113. In
one example aspect, the update control module 115 evaluates
the aforementioned characteristics of the set of software
updates and the template of the virtual machine or the virtual
machines created from that template by comparing a combi-
nation of coefficients, in one example aspect those obtained
from the template analysis module 110 and update analysis
module 113, with an established value, which is a number,
such as 43.5. In one example aspect, the combination used is
a linear combination of the aforementioned coefficients, for
example, the difference between the coefficient of importance
of continuous working and the coefficient of criticality of
updates. In another example aspect, the combination used is
the product of the coefficients, each of which has its own
index, for example the product of the coefficient of impor-
tance of continuous working with index “~1”" and that of the
coefficient of criticality of updates with index “1”. The
obtained combination of coefficients is compared with the
established value; in one example aspect the update control
module 115 makes a decision as to the need for updating the
software installed on the template of the virtual machine if the
combination of coefficients exceeds a value of, for example,
1.5. The value with which the combination of coefficients is
compared in one example aspect reflects how much more
important it is to install the updates than for the virtual
machines created from the template of the virtual machine to
run continuous, and in one example aspect it is established by
empirical values. Besides the coefficient of importance of
continuous working from the template analysis module 110,
the update control module 115 obtains the template of the
virtual machine that was used by the template analysis mod-
ule 110 to calculate the coefficient of importance of continu-
ous operation. Besides the coefficient of criticality of updates
from the update analysis module 113, the update control
module 115 obtains the template of the set of software
updates that was used by the update analysis module 113 to
calculate the coefficient of criticality of updates. The virtual
machine template and set of software updates obtained by the
above-described methods are sent by the update control mod-
ule 115, along with a decision as to the need for updating the
software of the template of the virtual machine, to a template
update module 116.

The template update module 116 is configured to update
the template of the virtual machine. Updating the template of
the virtual machine refers to updating the software of the
template of the virtual machine. In one example aspect, when
updating the software of the template of a virtual machine, the

US 9,182,974 B1

7

template update module 116 creates a virtual machine from
the aforementioned template, and in the context of its opera-
tion the installed software is subjected to updating with the
use of the set of software updates. From the virtual machine
with updated software, the template update module 116 cre-
ates the template of the virtual machine with updated soft-
ware. The template of the virtual machine is created from the
virtual machine by shutting it down and creating an image
corresponding to the aforementioned virtual machine. The
image includes data necessary for running of the virtual
machine. In another example aspect, the template update
module 116 does not run a virtual machine from the template
of the virtual machine intended for updating. Instead, the
modification in the software which is performed in accor-
dance with the installation of the set of software updates is
implemented directly in the template of the virtual machine.
In one example aspect, the template of the virtual machine is
connected to a computing device (such as a personal com-
puter) or another virtual machine as an external disk. The
changes that are made in the software during the installation
of the updates are made in the software installed on the
connected external disk by the template update module 116.
If the software updates include any instructions for changing
the software being updated, these instructions are carried out
by the template update module 116. An example of such
instructions may be SFX (Self-Extract Archive) instructions:
“Delete=*** dlI1”, “Path=C:\”, the first of which deletes a
certain file of the dynamic library dll, while the second speci-
fies a directory for copying files from the sfx archive of type
“C:\.

The template update module 116, using information from
the database on the virtual machines operating within the
infrastructure 118 that were created from the template of the
virtual machine that was updated by the template update
module 116, shuts down the virtual machines previously cre-
ated from the template of the virtual machine and runs the
new virtual machines from the updated template of the virtual
machine for operation within the infrastructure 118 in place
of the ones shut down.

In one example aspect, the template update module 116,
after updating the template of the virtual machine, saves that
template of the virtual machine along with information on the
versions of the updated software in the template database 112.

In one example aspect, an update testing module 117 may
be used to analyze the operation of the software on the virtual
machine. In one example aspect, the update testing module
117 is used to detect updated templates of virtual machines on
which the software (including the updated software) has
unstable operation (for example, the performance of certain
tasks has errors when the updated software is run) or can
adversely affect the operation of the virtual machines and
other software (for example, become a cause of incorrect
execution of tasks of other software). To detect critical events
occurring during the operation of the virtual machine and
reflecting unstable operation of the software, the update test-
ing module 117 analyzes the operation of the virtual machine
over the course of a period of time (e.g., 10 hours). During the
analysis, the update testing module 117 collects information
on critical events occurring in the course of the operation of
the virtual machine created from the template updated with
the aid of the template update module 116. If critical events
are found, the update testing module 117 sends a correspond-
ing message to the template update module 116. After obtain-
ing such a message, the template update module 116 classifies
the template of the virtual machine from which the analyzed
virtual machine was created as being unsuitable for further
use in the infrastructure 118, and accordingly the restarting of

30

40

45

50

8

the virtual machines with the use of this virtual machine
template is not carried out. In one example aspect, the tem-
plate update module 116 also does not send this virtual
machine template for storage in the template database 112.
Critical events occurring in the course of operation of the
analyzed virtual machine, in one example aspect, may be a
degradation in productivity of the virtual machine (including
due to a competition for the resources of the virtual machine
among the software running thereon) or errors in the opera-
tion of the operating system of the virtual machine. In one
example aspect, critical events involving degraded productiv-
ity may be found by a periodic checking (at established inter-
vals of time, such as every 10 minutes) of the utilization of
resources of the virtual machine: if the workload or the con-
sumption of resources (such as the central processing unit of
the virtual machine or the main memory of that virtual
machine) is constantly increasing, the update testing module
117 finds a critical event. In yet another example aspect,
errors in the operation of the operating system of the virtual
machine may be found by going to the Windows operating
system component known as Event Viewer, which makes it
possible to obtain a list of events occurring during the opera-
tion of the operating system, and to classity as critical events
those events on the list having the attribute “Level” with the
value “Error” and the attribute “Source” with a value contain-
ing the name of the process corresponding to the updated
software.

FIG. 2 shows a flow chart of an example aspect of the
operation of the template analysis module 110. In some
aspects, the template analysis module 110 is configured to
calculate the coefficient of importance of continuous opera-
tion of the virtual machine template, and also to transmit this
coefficient, along with the virtual machine template to which
the coefficient pertains, to the update control module 115. The
determination of the coefficient of importance of continuous
operation of the virtual machine template involves evaluating
the need to interrupt the running of the virtual machines
operating in the infrastructure 118 that were created from the
virtual machine template. In one example aspect, this evalu-
ation may be done by comparing the software installed on the
virtual machine template and a list of software from a soft-
ware evaluation table in which a weighting factor (e.g., a
number, such as 5.6) is established for each software pro-
gram; the higher the number, the more important the continu-
ous operation of the software associated therewith. In one
example aspect, this table is stored in the template evaluation
module 110. In another example aspect, this table is stored in
a specially designed software database. In one example
aspect, the coefficient of importance of continuous operation
for the virtual machine template is calculated by adding up the
weighting factors ofthe installed software in accordance with
the values from the software evaluation table. In another
example aspect, the coefficient of importance of continuous
operation is calculated by taking the square root of the sum of
the squares of the weighting factors of the installed software
in accordance with the values from the software evaluation
table.

Inyet another example aspect, during the calculation ofthe
coefficient of importance of continuous operation of the vir-
tual machine template by the template analysis module 110,
the module 110 may also collect information about operation
of virtual machines in the infrastructure 118 that were created
from the virtual machine template. In some example aspects,
during the calculation of the mentioned coefficient, it is pos-
sible to take into account the operation time of the virtual
machines created from the virtual machine template. It is
assumed that the longer the time of continuous operation (on

US 9,182,974 B1

9

average, for example) of the virtual machines created from
the virtual machine template, the more likely the operation of
such virtual machines should not be interrupted even for a
certain interval of time. The time of continuous operation of
a virtual machine may be evaluated by a periodic polling of
the virtual machine (for example, by establishing a connec-
tion with the virtual machine using ping utility) in order to
determine its status: operational or not. Thus, in one example
aspect, the time of continuous operation may be taken as
being the time between the earliest polling to which an affir-
mative response was sent as to the operation of the virtual
machine and the time of calculation of the coefficient of
importance of continuous operation. Based on these consid-
erations, in one example aspect, the coefficient of importance
of continuous operation when calculated by one of the afore-
mentioned techniques may be further multiplied by a factor
characterizing the likelihood of continuation of continuous
operation of the virtual machines created from the virtual
machine template. In one example aspect, this factor may be
calculated as the ratio between the average time of continuous
operation of the virtual machines created from the virtual
machine template and the average time of continuous opera-
tion of the virtual machines in the infrastructure 118.

FIG. 3 shows a detailed flow chart of an example of opera-
tion of the update analysis module 113. In some example
aspects, the update analysis module 113 is configured to
calculate the coefficient of criticality of updates, and also to
transmit this coefficient, along with the set of software
updates to which the coefficient pertains, to the update control
module 115. The determination of the coefficient of criticality
of'updates involves an evaluation of the need to install the set
of software updates as soon as possible, which set is found in
the update database 114. In some example aspect, the update
analysis module 113 analyzes the set of software updates,
where such set of updates includes only updates for the soft-
ware which is present on the virtual machine template on
which such set of software updates is supposed to be installed.
In one example aspect, the list of software installed on the
virtual machine template is obtained by the update analysis
module 113 from the template analysis module 110. When
calculating the coefficient of criticality of updates, the update
analysis module 113 obtains from the update database 114 the
set of software updates, and also information about the set of
software updates (e.g., the type(s) of each update, the version
and creation time of each update, the list of vulnerabilities
being removed, the level of criticality). When calculating the
coefficient of criticality of updates, each characteristic of the
software update (or a characteristic derived therefrom, for
example, the creation time might appear as the “age” of the
software update—the number of days from the moment of
creation of the software update to the moment of analysis of
that update) is assigned a corresponding number, character-
izing the degree of influence of that characteristic (such as the
type of update, the creation time) on the need to install that
software update on the virtual machine template. In one
example aspect, the aforementioned coefficients are calcu-
lated as follows when evaluating the software update: the
“age” of the software update may be evaluated by a number
equal to the product of, for example, 0.07 times the number of
days from the time of creation of the software update until the
time of analysis of such update; vulnerabilities removed are
evaluated by the product of, for example, 1.5 times the num-
ber of vulnerabilities removed by the software update; the
level of criticality may be taken into account without changes
(the level of criticality originally constitutes a number); the
overall type of the update may be evaluated by the sum of the
numbers characterizing the possible types of software update:

25

30

40

45

50

55

10

removal of a vulnerability—1, changing of functionality—
0.8, changing of interface—0.2. In one example aspect, the
update analysis module 113 calculates the coefficient of criti-
cality of updates as the sum of the coefficients corresponding
to the characteristics (e.g., the numbers characterizing the
degree of influence of the particular characteristic on the need
to install the software update) for each software update in the
set of software updates. The coefficient of criticality of
updates so calculated, with its corresponding set of software
updates, is sent by the update analysis module 113 to the input
to the update control module 115.

FIG. 4 shows a flowchart of the operating algorithm of one
example aspect of the above-described system for updating
software of templates of virtual machines. In step 400, the
template analysis module 110 calculates the coefficient of
importance of continuous operation with regard to the virtual
machine template. During this calculation, data are used that
are stored in the template database 112. The calculated coet-
ficient of importance of continuous operation together with
the template of the virtual machine to which that coefficient
pertains goes to the input of the update control module 115. In
step 410, the update analysis module 113 calculates the coef-
ficient of criticality of updates for the set of software updates.
During this calculation, data are used that are stored in the
update database 114. The calculated coefficient of criticality
of'updates together with the set of software updates to which
this coefficient pertains goes to the input of the update control
module 115. The update control module 115, in step 420,
calculates the combination of coefficients which said module
115 receives from the template analysis module 110 and the
update analysis module 113. In step 430, the update control
module 115 compares the combination of coefficients calcu-
lated in step 420 with an established value. If the combination
does not exceed the established value, the software of the
virtual machine template is not updated, and the system ends
its work in step 450. But if the combination is greater than the
established value, the virtual machine template and set of
software updates obtained by the update control module 115
are sent to the template update module 116 for subsequent
updating of the software of the virtual machine template in
step 440. In step 460, the update testing module 117 performs
an analysis of the influence of the software update in regard to
the operation of the software of the template obtained in step
440 with the aid of the template update module 116. In step
470, the update testing module 117 makes a decision to clas-
sify the virtual machine template with updated software fit for
further use. If the mentioned template was classified as
unsuitable for further use, then in accordance with step 480
there is no restarting of the virtual machines created from the
virtual machine template whose software was updated. But if
the virtual machine template with updated software was not
classified as unsuitable, then, in step 490, the template update
module 116 reboots the virtual machines running within the
infrastructure 118 that were created from the virtual machine
template whose software was updated in step 440.

FIG. 5 shows an example of a general-purpose computer
system (which may be a personal computer or a server) 20,
which may be used to implement aspects of system and meth-
ods disclosed herein. The computer system 20 includes a
central processing unit 21, a system memory 22 and a system
bus 23 connecting the various system components, including
the memory associated with the central processing unit 21.
The system bus 23 is realized like any bus structure known
from the prior art, including in turn a bus memory or bus
memory controller, a peripheral bus and a local bus, which is
able to interact with any other bus architecture. The system
memory includes permanent memory (ROM) 24 and random-

US 9,182,974 B1

11

access memory (RAM) 25. The basic input/output system
(BIOS) 26 includes the basic procedures ensuring the transfer
of information between elements of the personal computer
20, such as those at the time of loading the operating system
with the use of the ROM 24.

The personal computer 20, in turn, includes a hard disk 27
for reading and writing of data, a magnetic disk drive 28 for
reading and writing on removable magnetic disks 29 and an
optical drive 30 for reading and writing on removable optical
disks 31, such as CD-ROM, DVD-ROM and other optical
information media. The hard disk 27, the magnetic disk drive
28, and the optical drive 30 are connected to the system bus 23
across the hard disk interface 32, the magnetic disk interface
33 and the optical drive interface 34, respectively. The drives
and the corresponding computer information media are
power-independent modules for storage of computer instruc-
tions, data structures, program modules and other data of the
personal computer 20.

The present disclosure provides the implementation of a
system that uses a hard disk 27, a removable magnetic disk 29
and a removable optical disk 31, but it should be understood
that it is possible to employ other types of computer informa-
tion media 56 which are able to store data in a form readable
by a computer (solid state drives, flash memory cards, digital
disks, random-access memory (RAM) and so on), which are
connected to the system bus 23 via the controller 55.

The computer 20 has a file system 36, where the recorded
operating system 35 is stored, and also additional program
applications 37, other program modules 38 and program data
39. The user is able to enter commands and information into
the personal computer 20 by using input devices (keyboard
40, mouse 42). Other input devices (not shown) can be used:
microphone, joystick, game controller, scanner, and so on.
Such input devices usually plug into the computer system 20
through a serial port 46, which in turn is connected to the
system bus, but they can be connected in other ways, for
example, with the aid of a parallel port, a game port or a
universal serial bus (USB). A monitor 47 or other type of
display device is also connected to the system bus 23 across
an interface, such as a video adapter 48. In addition to the
monitor 47, the personal computer can be equipped with other
peripheral output devices (not shown), such as loudspeakers,
a printer, and so on.

The personal computer 20 is able to work in a network
environment, using a network connection to one or more
remote computers 49. The remote computer (or computers)
49 are also personal computers or servers having the majority
or all of the aforementioned elements in describing the nature
of'a personal computer 20, as shown in FIG. 4. Other devices
can also be present in the computer network, such as routers,
network stations, peer devices or other network nodes.

Network connections can form a local-area computer net-
work (LAN) 50 and a wide-area computer network (WAN).
Such networks are used in corporate computer networks and
internal company networks, and they generally have access to
the Internet. In LAN or WAN networks, the personal com-
puter 20 is connected to the local-area network 50 across a
network adapter or network interface 51. When networks are
used, the personal computer 20 can employ a modem 54 or
other modules for providing communications with a wide-
area computer network such as the Internet. The modem 54,
which is an internal or external device, is connected to the
system bus 23 by a serial port 46. It should be noted that the
network connections are only examples and need not depict

10

15

20

25

30

35

40

45

50

55

60

65

12

the exact configuration of the network, i.e., in reality there are
other ways of establishing a connection of one computer to
another by technical communication modules.

In various aspects, the systems and methods described
herein may be implemented in hardware, software, firmware,
or any combination thereof. If implemented in software, the
methods may be stored as one or more instructions or code on
a non-transitory computer-readable medium. Computer-
readable medium includes data storage. By way of example,
and not limitation, such computer-readable medium can com-
prise RAM, ROM, EEPROM, CD-ROM, Flash memory or
other types of electric, magnetic, or optical storage medium,
or any other medium that can be used to carry or store desired
program code in the form of instructions or data structures
and that can be accessed by a processor of a general purpose
computer.

In various aspects, the systems and methods described in
the present disclosure in terms of modules. The term “mod-
ule” as used herein refers to a real-world device, component,
or arrangement of components implemented using hardware,
such as by an application specific integrated circuit (ASIC) or
field-programmable gate array (FPGA), for example, or as a
combination of hardware and software, such as by a micro-
processor system and a set of instructions to implement the
module’s functionality, which (while being executed) trans-
form the microprocessor system into a special-purpose
device. A module can also be implemented as a combination
of the two, with certain functions facilitated by hardware
alone, and other functions facilitated by a combination of
hardware and software. In certain implementations, at least a
portion, and in some cases, all, of a module can be executed
on the processor of a general purpose computer (such as the
one described in greater detail in FIG. 5 above). Accordingly,
each module can be realized in a variety of suitable configu-
rations, and should not be limited to any particular implemen-
tation exemplified herein.

Inthe interest of clarity, not all of the routine features of the
aspects are disclosed herein. It will be appreciated that in the
development of any actual implementation of the present
disclosure, numerous implementation-specific decisions
must be made in order to achieve the developer’s specific
goals, and that these specific goals will vary for different
implementations and different developers. It will be appreci-
ated that such a development effort might be complex and
time-consuming, but would nevertheless be a routine under-
taking of engineering for those of ordinary skill in the art
having the benefit of this disclosure.

Furthermore, it is to be understood that the phraseology or
terminology used herein is for the purpose of description and
not of restriction, such that the terminology or phraseology of
the present specification is to be interpreted by the skilled in
the art in light of the teachings and guidance presented herein,
in combination with the knowledge of the skilled in the rel-
evant art(s). Moreover, it is not intended for any term in the
specification or claims to be ascribed an uncommon or special
meaning unless explicitly set forth as such.

The various aspects disclosed herein encompass present
and future known equivalents to the known modules referred
to herein by way of illustration. Moreover, while aspects and
applications have been shown and described, it would be
apparent to those skilled in the art having the benefit of this
disclosure that many more modifications than mentioned
above are possible without departing from the inventive con-
cepts disclosed herein.

US 9,182,974 B1

13

The invention claimed is:
1. A method for updating software on virtual machines, the
method comprising:
determining, by a hardware processor, a first coefficient
indicative of alevel of importance of a continuous opera-
tion of one or more virtual machines created from a
virtual machine template;
determining a second coefficient indicative of a level of
criticality of software updates on the one or more virtual
machines created from the virtual machine template;
determining a third coefficient as a function of the first
coefficient and the second coefficient;
when the third coefficient exceeds a threshold, updating the
software on the virtual machine template to generate an
updated virtual machine template; and
determining whether the updated virtual machine template
is suitable for being used for one or more virtual
machines by detecting events causing an incorrect
execution of at least one virtual machine during a period
of operating a test virtual machine created from the up
virtual machine template.
2. The method of claim 1, further comprising:
upon determining that the updated virtual machine tem-
plate is suitable:
creating a new virtual machine from the updated virtual
machine template;
shutting down the one or more virtual machines; and
running the new virtual machine to replace the one or
more virtual machines.
3. The method of claim 1, further comprising:
providing a database of software updates storing one or
more of:
at least one software update for updating of the one or
more virtual machines;
data about a creation time of the software update;
data about a version of the software update;
data about software for which the software update is
intended;
data about vulnerabilities which are patched by the soft-
ware update;
data about a level of criticality of the software update;
and
data indicating a nature of changes made in the software
by the update.
4. The method of claim 1, wherein the third coefficient is
one of:
a linear function of the first coefficient and the second
coefficient; and
a product of the first coefficient weighted by a first index
and the second coefficient weighted by a second index.
5. The method of claim 1, wherein updating the software on
the virtual machine template comprises:
generating a dummy virtual machine based on the virtual
machine template;
applying the software update to the software of the dummy
virtual machine;
shutting down the dummy virtual machine; and
creating an image corresponding to the dummy virtual
machine.
6. The method of claim 1, wherein updating the software on
the virtual machine template comprises:
applying the software update to the software of the virtual
machine template.
7. The method of claim 1, wherein determining the first
coefficient comprises:
based on a software evaluation table in which a weighting
factor is established for each software program, deter-

10

15

20

25

30

35

40

45

50

55

60

65

14

mining weighting factors for installed software on the
virtual machine template; and

calculating the first coefficient s a function of the weighting

factors.

8. The method of claim 1, wherein determining the first
coefficient is performed based on a recorded length of the
continuous operation of the one or more virtual machines.

9. The method of claim 1, wherein determining the second
coefficient comprises:

determining one or more characteristics of the software

update and respective coefficients for the one or more
characteristics; and

determining the second coefficient as a function of the

respective coefficients.

10. A system forupdating software on virtual machines, the
system comprising:

a hardware processor configured to:

determine a first coefficient indicative of a level of
importance of a continuous operation of one or more
virtual machines created from a virtual machine tem-
plate;

determine a second coefficient indicative of a level of
criticality of software updates on the one or more
virtual machines created from the virtual machine
template;

determine a third coefficient as a function of the first
coefficient and the second coefficient;

when the third coefficient exceeds a threshold, update
the software on the virtual machine template to gen-
erate an updated virtual machine template; and

determine whether the updated virtual machine template
is suitable for being used for one or more virtual
machines by detecting events causing an incorrect
execution of at least one virtual machine during a
period of operating test virtual machine created from
he updated virtual machine template.

11. The system of claim 10, wherein the processor is fur-
ther configured to:

upon determining that the updated virtual machine tem-

plate is suitable:

create a new virtual machine from the updated virtual
machine template;

shut down the one or more virtual machines; and

run the new virtual machine to replace the one or more
virtual machines.

12. The system of claim 10, wherein the processor is fur-
ther configured to:

provide a database of software updates storing one or more

of:

at least one software update for updating of the one or
more virtual machines;

data about a creation time of the software update;

data about a version of the software update;

data about software for which the software update is
intended;

data about vulnerabilities which are patched by the soft-
ware update;

data about a level of criticality of the software update;
and

data indicating a nature of changes made in the software
by the update.

13. The system of claim 10, wherein the third coefficient is
one of:

a linear function of the first coefficient and the second

coefficient; and

a product of the first coefficient weighted by a first index

and the second coefficient weighted by a second index.

US 9,182,974 B1

15

14. The system of claim 10, wherein the processor updates
the software on the virtual machine template by:

generating a dummy virtual machine based on the virtual

machine template;

applying the software update to the software of the dummy

virtual machine;

shutting down the dummy virtual machine; and

creating an image corresponding to the dummy virtual

machine.

15. The system of claim 10, wherein the processor updates
the software on the virtual machine template by:

applying the software update to he software of the virtual

machine plate.

16. The system of claim 10, wherein the processor deter-
mines the first coefficient by:

based on a software evaluation table in which a weighting

factor is established for each software program, deter-
mining weighting factors for installed software on the
virtual machine template; and

calculating the first coefficient as a function of the weight-

ing factors.

17. The system of claim 10, wherein the processor deter-
mines the first coefficient based on recorded lengths of the
continuous operation of the one or more virtual machines.

18. The system of claim 10, wherein the processor deter-
mines the second coefficient by:

determining one or more characteristics of the Software

update and respective coefficients for the one or more
characteristics; and

determining the second coefficient as a function of he

respective coefficients.

19. A computer program product stored on a non-transitory
computer-readable storage medium, the computer program

5

10

15

20

25

30

16

product comprising computer-executable instructions for
causing a computing device having a hardware processor to
update software on virtual machines, including instructions
for:
determining a first coefficient indicative of a level of impor-
tance of a continuous operation of one or more virtual
machines created from a virtual machine template;
determining a second coefficient indicative of a level of
criticality of software updates on the one or more virtual
machines created from the virtual machine template;
determining a third coefficient as a function of the first
coefficient and the second coefficient;
when the third coefficient exceeds a threshold, updating the
software on the virtual chine template to generate an
updated virtual machine template; and
determining whether the updated virtual machine template
is suitable for being used for one or more virtual
machines by detecting events causing an incorrect
execution of at least one virtual machine during a period
of operating a test virtual machine created from the
updated virtual machine template.
20. The computer program product of claim 19, further
comprising instructions for:
upon determining that the updated virtual machine tem-
plate is suitable:
creating a new virtual machine from the updated virtual
machine template;

shutting down the one or more virtual machines; and

running the new virtual machine to replace the one or
more virtual machines.

#* #* #* #* #*

